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Abstract

Molecular mechanisms underlying Alzheimer's disease (AD) are difficult to investigate,

partly because diagnosis lags behind the insidious pathological processes. Therefore,

identifying AD neuroimaging markers and their genetic modifiers may help study early

mechanisms of neurodegeneration. We aimed to identify brain regions of the highest

vulnerability to AD using a data-driven search in the AD Neuroimaging Initiative

(ADNI, n = 1,100 subjects), and further explored genetic variants affecting this critical

brain trait using both ADNI and the younger UK Biobank cohort (n = 8,428 subjects).

Tensor-Based Morphometry (TBM) and Independent Component Analysis (ICA) identi-

fied the limbic system and its interconnecting white-matter as the most AD-vulnerable

brain feature. Whole-genome analysis revealed a common variant in SHARPIN that was

associated with this imaging feature (rs34173062, p = 2.1 × 10−10). This genetic associ-

ation was validated in the UK Biobank, where it was correlated with entorhinal cortical

thickness bilaterally (p = .002 left and p = 8.6 × 10−4 right), and with parental history of

AD (p = 2.3 × 10−6). Our findings suggest that neuroanatomical variation in the limbic

system and AD risk are associated with a novel variant in SHARPIN. The role of this

postsynaptic density gene product in β1-integrin adhesion is in line with the amyloid

precursor protein (APP) intracellular signaling pathway and the recent genome-wide

evidence.
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1 | INTRODUCTION

AD is one of the leading causes of death and disability in the

elderly for which no disease-modifying treatment yet exists. Thus

far, interventional trials to slow the progression of AD have failed

(Cummings, 2018). The mild and heterogeneous presentation at the

early stage of AD reduces the accuracy of the available diagnostic

criteria, which prevents timely initiation of potentially effective thera-

pies. Advancement in the development of noninvasive biomarkers is

expected to aid in early diagnosis and prognostic stratification of AD.

A number of MRI measures have been suggested to have poten-

tial for AD diagnosis and longitudinal monitoring. These include loss

of hippocampal volume (Schuff et al., 2009), reduced thickness of the

entorhinal cortex (Velayudhan et al., 2013) and increased volume of

the lateral ventricles (Nestor et al., 2008). Most of these imaging fea-

tures were chosen based on a priori assumptions of the boundaries of

anatomical structures involved in the disease process. However, the

sensitivity of a priori-driven approaches that single out a particular

brain region such as the hippocampus is limited by heterogeneity

of AD, which translates to different patterns of brain degeneration in

different patients (Marquand, Rezek, Buitelaar, & Beckmann, 2016).

The region-of-interest studies also disregard the spatial continuity

across brain areas (Haak, Marquand, & Beckmann, 2018) and the

covariance within and across brain networks (Xu, Groth, Pearlson,

Schretlen, & Calhoun, 2009). Exploratory methods such as indepen-

dent component-analysis (ICA) can circumvent this problem, by pro-

viding a data-driven picture of the affected brain networks, and

thereby track the impact of the disease in a hypothesis-free manner.

Instead of imposing categorical or binary boundaries onto the data,

feature extraction methods like ICA transform the data into features

based on the inherent—in this case spatial—structure of the data.

Staying closer to the inherent biological data structure allows more

relevant variance to be maintained, which benefits the sensitivity of

subsequent analyses. ICA also reduces the number of statistical tests

without resorting to a priori regions of interest, which in most scenar-

ios would substantially boost statistical power in the face of multiple

testing. This is particularly true for genome-wide association studies

of millions of variants. At the same time ICA also aids interpretability

of high-dimensional data, by describing the data in terms of a smaller

number of relevant variables (i.e., components or features).

AD is highly heritable at h2 = 0.58–0.79 (Gatz et al., 2006).

APOE4, which is the strongest genetic risk factor for sporadic late-

onset AD, explains only a quarter of this genetic variance. The novel

risk variants discovered by genome-wide association studies (GWAS)

explain an even smaller proportion of AD heritability (Jansen

et al., 2019). These studies commonly rely on diagnostic instruments

for the dichotomous definition of the disease versus the healthy state.

However, diagnostic instruments are originally aimed at guiding deci-

sions in the clinic and capture mostly the terminal events of the

disease pathways. Pathological brain changes are often reflected in

neuroimaging data prior to the onset of clinical signs (Piers, 2018;

Tabatabaei-Jafari, Shaw, Walsh, Cherbuin, & Initiative, 2019). Quanti-

tative neuroimaging may therefore be more sensitive to the genetic

determinants of AD at early stages, when the clinical presentation

does not yet fulfill the diagnostic criteria.

Here, we used ICA of pre-processed structural brain MRI data in

a longitudinal cohort of elderly subjects to arrive at a data-driven pat-

tern of brain degeneration in AD and mild cognitive impairment (MCI).

We then performed a genome-wide search for genetic variants associ-

ated with structural integrity of this disease-related brain feature.

Finally, we validated the genome-wide association with structure of

the medial temporal cortex in an independent sample. The effect of

the variant on parental history of AD, as a proxy to dementia predis-

position, was also assessed.

2 | METHODS

2.1 | ADNI participants

Imaging, whole-genome sequencing and clinical data used in the discov-

ery phase of this study were obtained from the ADNI database (adni.

loni.usc.edu). ADNI is a multi-center initiative led by principal investiga-

tor Michael W. Weiner, MD, VA Medical Center and University of

California, San Francisco, and enrolls subjects with normal cognition,

MCI and AD. Our investigation included 1,100 ADNI individuals (age:

74.0 ± 7.1 year, Table 1) with baseline T1-weighted brain MRI scans.

Longitudinal MRI scans were available in a subsample of 1,039 subjects

TABLE 1 Study subjects

CN MCI AD Total (female)

Cross-sectional 383 456 361 1,100 (491)

Longitudinal 269 422 348 1,039 (457)

GWAS 226 402 180 808 (363)
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who underwent follow-up imaging at 1.07 ± 0.08 year (n = 1,009 sub-

jects) and/or 2.07 ± 0.11 year intervals (n = 883 subjects).

Cognitively healthy individuals were defined by Mini Mental State

Examination (MMSE) scores between 24 and 30, CDR of zero, and

by the absence of depression, dementia, and any sign of cognitive

impairment. MCI subjects were defined by MMSE scores between

24 and 30, memory complaints with objective memory loss as

measured by education-adjusted scores on Wechsler Memory Scale-

Revised (WMS-R) logical memory II, a CDR of 0.5, absence of signifi-

cant impairment in other cognitive domains and absence of dementia.

AD patients had MMSE score between 20 and 26, CDR of 0.5 or 1.0

and fulfilled NINCDS/ADRDA criteria for probable AD.

2.2 | UK Biobank

The UK Biobank dataset was used for validation of our ADNI analysis

results (Sudlow et al., 2015) including subjects with the age at baseline

range of 40–69 years. Association of brain imaging-derived phenotypes

(IDPs) with genome-wide variants has been previously investigated in

8,428 subjects scanned by MRI and data is publically available across

11,734,353 SNPs (Elliott et al., 2018). For our work, we extracted sum-

mary statistics of cortical thickness (http://big.stats.ox.ac.uk) for the

top-hit variant of the ADNI association study in UK Biobank and visual-

ized it on a standard FreeSurfer parcellation atlas. In addition, genome-

wide statistics of the paternal (n = 292,053 subjects) and maternal

(n = 308,780 subjects) history of AD were retrieved from an indepen-

dent GWAS of UK Biobank cohort (https://github.com/nealelab/

uk_biobank_gwas). We performed a fixed-effect meta-analysis on the

maternal and paternal SNP effect sizes and obtained genome-wide

variants associated with history of AD in parents, similar to the recent

AD-by-proxy approach (Jansen et al., 2019; Marioni et al., 2018).

2.3 | Brain atrophy estimation and diagnosis
discrimination using independent component analysis

We registered all MRI volumes to construct a minimum-deformation

study brain template in four linear and four nonlinear iterations using

SyN (Avants et al., 2010). Cross-sectional TBM was used to identify

voxel-wise brain volume differences at baseline across 1,100 study

subjects. Longitudinal tensor-based morphometry (TBM) was also per-

formed to calculate voxel-wise progression of brain atrophy and its

annual rate in all individuals with follow-up MRI scans (n = 1,039), using

extensively validated methods (Figure 1) (Yushkevich et al., 2010). Both

of the cross-sectional and longitudinal pipelines yielded SyN Jacobian

determinant maps, which respectively reflect voxel-wise differences in

regional brain volume of each subject compared to the common tem-

plate at baseline, or the annual rate of brain volume loss in each subject

in course of the disease. The average maps of the longitudinal rates

of change for each diagnostic group are shown in Figure S1. These Jaco-

bian maps were then decomposed into independent sources by ICA.

ICA is an exploratory method for linearly decomposing neuroim-

aging data into 3D spatial maps and subject-wise loadings, and has

shown to effectively separate neural processes of different origins in

functional (Beckmann & Smith, 2004) and structural neuroimaging

(Groves, Beckmann, Smith, & Woolrich, 2011). To decompose maps of

structural brain variation at various spatial details, ICA was performed

at multiple dimensions (8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 72,

80, 88 and 96), yielding a total of 1,348 spatial maps of baseline brain

volume (n = 684 maps) and of longitudinal atrophy (n = 664 maps).

The extracted components represent brain regions with structural

covariance across the study population, that is, areas that tend to lose

volume with statistically correlated trajectories possibly due to a com-

mon underlying pathology. In ICA, subject-wise loading values linearly

reflect each subject's level of brain volume (in cross-sectional mor-

phometry) or atrophy rate (in longitudinal morphometry) within each

3D spatial map (for further details, see Appendix S1). To find out

which of the brain components were related to AD, they were used

as predictor variables in L1-regularized (LASSO) logistic regression

models (Tibshirani, 1996) to discriminate AD patients or MCI subjects

from the cognitively normal group (Figure S2). Leave-one-out cross

validation was used to optimize the L1 regularization parameter (λ)

and achieve maximum classification accuracy in the dichotomous

case/control logistic discriminations. Regression beta estimates (log

odds ratios) were then compared across all brain components to

identify the single component with the highest association with AD

in cross-sectional and longitudinal data, controlling for subjects' age

and sex.

2.3.1 | Correlation of MRI feature with clinical
ADAS score

Correlation of the top AD-associated brain component was investi-

gated with cognitive performance at baseline as measured by the

ADAS-cog-13 scale (Skinner et al., 2012). The analysis was performed

separately for baseline volume measure and longitudinal atrophy rate

of the top component in AD (n = 361 cross-sectional, 348 longitudinal)

and MCI (n = 456 cross-sectional, 422 longitudinal) subjects, control-

ling for age and sex covariates in a general linear model.

2.4 | Genome-wide association study

The AD-associated imaging feature was brought to genome-wide asso-

ciation analysis to identify genetic drives of structural brain deficits in

disease-vulnerable regions. Whole-genome sequencing data was col-

lected at an average depth of 30–40× in 808 participants, from which

a total of 38,566,438 single-nucleotide polymorphisms (SNPs) and

5,969,342 short insertion-deletions (indels) were called using Genome

Analysis Toolkit (GATK) (DePristo et al., 2011; Saykin et al., 2015). Vari-

ants were filtered by considering minor phred quality score of 30, minor

allele frequency of 0.01, minimum variant genotyping rate of 0.9 and
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Hardy–Weinberg Equilibrium state of p > 1 × 10−6, resulting in inclusion

of 10,957,927 QC-passed variants for whole-genome association. We

chose the WGS data over the imputed DNA array genotypes for higher

coverage and variant calling density of the former platform, as chip

arrays do not capture the total extent of genomic variation in each indi-

vidual and some causal variants may be missed due to poor imputation.

We searched for genetic variants correlated with baseline volume of the

top AD-associated brain component in all study subjects (Table 1).

F IGURE 1 Outline of the Study methods. T1-weighted MRIs were used to identify structural brain changes in cross-sectional and longitudinal
studies. ICA decomposed 1,348 spatial sources of brain morphometry, among which the medial temporal circuit (MTC) was replicated as the top
imaging predictor of AD and MCI and subsequently brought to GWAS
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The GWAS regression model included age, sex, the diagnosis groups

(AD, MCI, cognitively normal), three principal axes of population struc-

ture, MRI pulse sequence (MP-RAGE vs. SPGR), and the APOE4 allele

dosage as covariates. Our analysis showed that field strength, voxel-size,

MRI vendor and the pulse sequence type (MP-RAGE vs. IR-SPGR) do

not significantly affect the ICA phenotype, but we regress out the pulse

sequence type from the data as it explained more variance than

the rest.

3 | RESULTS

3.1 | Strong structural covariance in Alzheimer's
disease-affected brain regions: Independent
component analysis

ICA identified latent sources in brain morphometry maps that mapped

to anatomically and functionally coherent regions (Figure S3).

F IGURE 2 Brain components related to Alzheimer’s disease. Left: Cross-correlation matrices of brain components that discriminated AD
patients from cognitively normal subjects were constructed. Hierarchical clustering was then applied to these matrices to group similar components
together. Right: cluster-wise sum of the z-score maps of the components are shown (red-yellow: atrophy, blue: expansion; thresholded via mixture
modeling. The strongest AD discriminator in both analyses was a component referred to as the medial temporal circuit (MTC) in this paper, which is
plotted as the yellow diagonal element in both matrices. This component (see volume rendered video S1) was the focus of brain atrophy in a
cluster of components mapping to temporal lobes (b and f). Brain morphometry results also showed other clusters of structural brain deficits in AD
that map to the posterior brain/occipitoparietal regions (a, d) and lateral temporal, insular and subcortical areas (c, e, g)
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Following the two-class LASSO logistic regressions, AD patients could

be classified by reduced volume of 26 brain components (out of 684)

in cross-sectional MRI from the healthy group, or 30 components (out

of 664) in longitudinal MRI, with respective classification accuracies of

86% and 87% as assessed by leave-one-out cross validation (Table 1).

These component counts reflect the point of saturation in the LASSO

regression model, that is, classification accuracy will no longer signifi-

cantly increase by inclusion of more components (Figure S2). The

cross-sectional components predicting AD diagnosis clustered to:

precuneus, occipital lobes and pulvinar (Figure 2a); a robust cluster

including hippocampi, amygdalae, parahippocampal gyri, fornix, mam-

millary bodies, and uncinate fasciculi (Figure 2b); as well as lateral tem-

poral lobes and the cerebellum (Figure 2c). The AD-predicting

components in longitudinal TBM clustered to: precuneus, cuneus and

occipito-parietal lobes (Figure 2d); thalamus, temporal lobes and its

association areas (Figure 2e); medial temporal lobes, uncinate fascicu-

lus and the orbitofrontal cortex (Figure 2f); as well as insula, basal

ganglia and cerebellum (Figure 2g).

F IGURE 3 Contribution of brain components in predicting subjects’ cognitive status. Each bar represents a brain component that was able to
distinguish MCI subjects (left plots) and/or AD patients (right plots) from the cognitively normal subjects in L1 regression models. Bar lengths
encode log odds ratios reflecting the importance of each component in diagnosis classification. Both models in cross-sectional (top) and
longitudinal neuroimaging (bottom) consistently identified the MTC component as the strongest predictor of AD and MCI (red bars). The top
figure shows multiple bars reflecting the MTC, corresponding to different dimensionalities (See Appendix S1). Each voxel’s contribution to the
MTC is depicted in the figure on the right, for both the cross-sectional and the longitudinal decompositions
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3.2 | Early degeneration of the limbic system
in Alzheimer's disease

The most prominent predictor of AD was a component that obtained

the top odds-ratio rank in both the cross-sectional and the longitudi-

nal analyses in discriminating AD from the cognitively-normal sub-

jects. This component, referred to as the Medial Temporal Circuit

(MTC) in this paper, was also a predictor of subjects with MCI,

obtaining the top odds-ratio rank in discriminating MCI subjects from

the cognitively normal group in cross-sectional brain morphometry

(Figure 3). The MTC demonstrated a bilateral network-like topology

(see video S1). The focus of brain atrophy in the MTC localized to the

bilateral amygdalae, and further extended to the hippocampi, entorhi-

nal cortex, insula, mammillary bodies, and the fornix.

Although the MTC included the hippocampus, it had a better

discriminatory power for MCI subjects than hippocampus per se

(Welch's t = 4.4: p = 1.2 × 10−5 vs. t = 3.2: p = .002 for MTC and

hippocampus, respectively). The MTC also showed much higher

statistical power than hippocampal volume for group-wide discrimina-

tion of the AD from the cognitively normal group, although subject to

circularity (Welch's t = 16.8: p < 10−15 vs. t = 4.4: p = 1.1 × 10−5 for

MTC and hippocampus, respectively).

3.3 | Reduction of brain volume in the medial
temporal component and cognitive decline

Cognitive performance of participants, as measured by ADAS-cog,

was correlated with MTC at its baseline volume in AD (p = 5.4 × 10−8)

and MCI (p = 9.6 × 10−7), adjusted for age and sex. Similarly, the atro-

phy rate in MTC showed significant associations with ADAS-cog in

AD (p = .04) and MCI subjects (p = .002) adjusted for age and sex.

Older age (p = 2.6 × 10−5) and female sex (p = 7.5 × 10−5) were asso-

ciated with faster atrophy in this imaging feature. Compared to the

cognitively normal group, the annual atrophy rate in the MTC was

increased by 2.1-fold in MCI and 5.1-fold in AD patients.

TABLE 2 GWAS top SNPs

SNP Chr Position (hg19) A1 A2 (effect) Frequency β Gene mapping p-value

rs56112946a 3 197,077,194 C T 0.03 −.15 - 3.1 × 10−7

rs3778470 6 94,075,684 G A 0.12 −.15 EPHA7 (intronic) 1.5 × 10−7

rs149101079 8 69,347,181 G A 0.04 −.15 C8orf34 3.1 × 10−7

rs34173062 8 145,158,607 G A 0.10 −.19 SHARPIN (missense) 2.1 × 10−10

rs28439901 10 14,494,941 G A 0.08 −.15 FRMD4A (intronic) 3.2 × 10−7

aIn linkage disequilibrium with rs55672024 (r2 = .96).

F IGURE 5 Association of rs34173062 with cortical thickness. Thickness of bilateral entorhinal cortices (red) was significantly associated with
rs34173062 in the UK Biobank cohort (n=8,428 subjects)

3744 SOHEILI-NEZHAD ET AL.



3.4 | Genetic modifiers of brain volume in the
medial temporal component

GWAS revealed a single missense SNP in the SHARPIN gene,

rs34173062, which was genome-wide significant at p = 2.1 × 10−10

(normalized beta = −.2; Figures 4 and S4). Genomic inflation (λ) was

calculated at 1.028. Two other trend-level variants (p < 10−6) were

located in the introns of EPHA7 and FRMD4A (Table 2). The APOE

locus was associated with the MRI feature at p = .0047. We tested

28 other AD risk loci of the latest AD GWAS (Jansen et al., 2019),

and none of the risk variants passed multiple comparisons correc-

tions. There were two weak signals for HLA-DRB1 and PICALM

loci at the same direction (p = .013 and .026 respectively), but general

sign-concordance was a trend at p = .068. Performing the GWAS

without conditioning on APOEε4 did not substantially affect the top

variants statistics, and SHARPIN remained the single genome-wide

significant locus at p = 6.3 × 10−10. MRI pulse sequence (MP-RAGE

vs. IR-SPGR) did not affect the ICA-extracted measure (p = .8).

We sought validation of the SHARPIN variant in the UK Biobank

cohort in which rs34173062 was directly genotyped by the Axiom

genotyping array (Elliott et al., 2018), showing a minor allele fre-

quency of 0.07. In this cohort (n = 8,428 subjects), rs34173062 was

associated with reduced thickness of the entorhinal cortex in left

(p = .002) and right (p = 8.6 × 10−4) hemispheres, in the same direc-

tion as in the ADNI discovery sample (effect allele: A-allele; effect

size on unit-variance normalized phenotype = −0.1, Figure 5). As the

age of the UK Biobank subjects (49–69 years) is relatively young for

clinical presentation of late-onset AD, we further searched for paren-

tal history of AD as a proxy to its heritable component. The risk allele

(rs34173062-A) was significantly associated with increased maternal

(p = .0012) and paternal (p = 5.1 × 10−4) history of AD, which trans-

lates to a fixed-effect meta-analysis p-value of 2.3 × 10−6 in both

parents with a consistent effect direction (Figure 4, regional associa-

tion plot).

4 | DISCUSSION

Using fully data-driven methods, we identified an anatomical feature

of brain atrophy in AD, centered on the medial temporal lobes and

its input/output circuits to fornix and the parahippocampal gyrus.

Considering the role of this network and the associated pathways

in memory mechanisms, observation of voxel-wise covariance in its

subcomponents may reflect network-level vulnerability to a common

underlying pathology in AD. This finding may be due to cellular

and proteomic compositions driving brain degeneration and resulting

in a symmetrical pattern of brain atrophy in the ICA probability maps.

Specifically, our limbic component suggests that amygdalae are the

most vulnerable structures of this network in AD, followed by bilateral

hippocampi in a head-to-tail direction, and subsequently fimbriae

and fornical tracts. This observation is consistent with a previous

report showing that a healthy APOE4 carrier status is associated with

abnormal brain connectivity in amygdalae and hippocampal heads,

suggesting early involvement of these subregions of the medial tem-

poral lobes in the disease trajectory (Filippini et al., 2009).

Our results indicate that the parental AD-by-proxy phenotype is

associated with a genetic modifier of a structurally disrupted limbic

system as revealed by ICA and MRI. Similar to AD, the limbic compo-

nent was the strongest imaging predictor of MCI, but the lower dis-

criminatory power in MCI discrimination indicates that individuals

with MCI are more similar to the healthy population in terms of this

brain phenotype, and that they may represent a more heteroge-

neous population than the clinically probable AD group. Neverthe-

less, these observations support the notion that the underlying

mechanisms of mild cognitive impairment partially overlap with

AD. Clinical studies such as drug trials may benefit from stratifying

MCI cohorts based on data-driven imaging features of limbic integ-

rity at baseline.

In our genetic association analysis, we identified a common variant

in SHARPIN in association with the MRI feature of the limbic system.

This variant substitutes an amino acid in the N-terminal domain of the

SHARPIN protein, a site responsible for its dimerization with potential

roles in scaffolding as it adopts a pleckstrin homology superfold

(Stieglitz, Haire, Dikic, & Rittinger, 2012). Association of this variant

with the history of AD in both parents, in the UK Biobank as an inde-

pendent cohort comprising younger population, confirms contribution

of SHARPIN to dementia heritability and early subclinical pathology.

Two recent articles have implicated SHARPIN in AD, with an ultra-rare

variant in this gene at minor allele frequency of �0.0002 discovered

to increase the risk of AD to almost six-fold in a Japanese cohort

(Asanomi et al., 2019; Lancour et al., 2018). While this variant is not

polymorphic in the western population, our study shows that another

nonsynonymous variant in SHARPIN predisposes to AD and brain

degeneration in the western population. The variant we observed is

ultra-rare to nonpolymorphic in the eastern Asian cohorts (<0.01), but

has a minor allele frequency of 0.04–0.13 in northern American,

European and Iranian populations (Fattahi et al., 2019). As a compo-

nent of the postsynaptic SHANK scaffold, SHARPIN links the gluta-

mate neurotransmitter receptors with the internal actin cytoskeleton

(Lim et al., 2001). SHARPIN also modulates recruitment of another AD

risk gene product, Kindlin-2, to the β1-integrin adhesion receptors

(Rantala et al., 2011). We suspect that SHARPIN affects synaptic adhe-

sion and its dysfunction may disrupt the postsynaptic scaffold. Implica-

tion of the cell adhesion pathway by SHARPIN spotlights alternate

mechanisms of APP and γ-secretase function in cell adhesion regula-

tion, and specially direct interaction of APP with the β1-integrin adhe-

sion pathway (Bot, Schweizer, Ben Halima, & Fraering, 2011; Sabo,

Ikin, Buxbaum, & Greengard, 2001).

FRMD4A and EPHA7 loci were also associated with limbic degen-

eration in the discovery cohort at a trend-level (p < 10−6). FRMD4A

has been previously associated with AD (Lambert et al., 2013) and

codes for a scaffolding protein that connects the actin cytoskeleton

with adherens junctions for cell adhesion regulation and membrane

remodeling (Ikenouchi & Umeda, 2010). Although the potential role of

FRMD4A in neurobiology is unknown, this molecular function aligns

with the mechanisms of postsynaptic adhesion and neurotransmitter

SOHEILI-NEZHAD ET AL. 3745



receptor trafficking in synaptic plasticity. EPHA7 codes for a receptor

engaged in dendritic guidance and adhesion-regulated assembly of

the synapse (Clifford et al., 2014), further highlighting the cytoskeletal

pathway acting downstream to the synaptic adhesion receptors in

AD. A rare variant in this gene has been previously reported to segre-

gate with the disease status in a family with autosomal dominant AD

(Kunkle B.W., 2014). Of note, both of these gene products interact

with the (β1-)integrin adhesion pathway, either through ARF and

cytohesin (Oh & Santy, 2010) or directly (Sharfe et al., 2008).

While argument has been recently made for relevance of the

focal adhesion pathway to elements of the amyloid cascade (Dourlen,

Kilinc, Malmanche, Chapuis, & Lambert, 2019), we suspect that cell

adhesion may rather act independently of the amyloid cascade in the

disease process. In the context of cell adhesion, SHARPIN and APP

share intriguing molecular signaling mechanisms with the APOE

receptors. Both APP and SHARPIN cross-talk with the β1-integrin

pathway of cell adhesion (Rantala et al., 2011; Sabo et al., 2001) as

does the APOE receptor LRP1 (Orr et al., 2003). A recent elegant

report has revealed clock-like accumulation of somatic mutations in

aging neurons of healthy humans, and this genosenium mechanism

(Hoang et al., 2016; Lodato et al., 2018) may drive loss of critical syn-

aptic adhesion regulators such as the extremely large LRP1B receptor

of APOE, which has a highly brain specific expression profile para-

lleling areas of AD vulnerability (Haas et al., 2011; Marschang

et al., 2004; Wu, Li, Yu, & Deng, 2008). Further investigation into the

effect of genosenium on synaptic adhesion regulators and their modu-

lation by the RELN/β1-integrin/LRP pathway may be warranted in

light of the genetic liability of AD that remains unexplained by amyloid

beta-related mechanisms.

A major strength of our study is the use of ICA, which allowed us

to derive a data-driven, voxel-wise neuroanatomical phenotype that is

more sensitive to AD and MCI than the widely used hippocampal vol-

ume feature. For future researchers, it will be possible to map the

AD-relevant brain component of the medial temporal lobes to other,

independent cohorts, using the voxel-wise morphometry data and

spatial regression to derive an AD-sensitive MRI feature. Another

strength is the validation of our genome-wide significant association

in a similar neuroanatomical region in an independent cohort. How-

ever, our study also has a number of limitations. It was not possible to

use the clinical AD phenotype in the UK Biobank cohort due to the

relatively young age distribution. The parental by-proxy phenotype

used here is confounded by recall bias and relative lack of specificity.

Nevertheless, a previous study has shown that this proxy phenotype

has a high level of genetic correlation (r = .8) with the genetic architec-

ture of AD (Jansen et al., 2019). As a second limitation, further track-

ing the longitudinal trajectory of brain atrophy and its association with

symptoms of cognitive decline will be needed to validate the ICA-

based imaging feature of the limbic system as an early disease bio-

marker. We observed that except APOE, other risk loci of clinical AD

were not associated with the structural MRI feature in our association

study at a significant level. This divergence may either stem from

limited statistical power, or indicate that brain atrophy and clinical

cognitive decline are biologically inter-related but not equivalent in

their genetic underpinnings. MRI-derived atrophy features probably

reflect neuronal death aspect of AD pathophysiology that results in

loss of tissue. However, genetic risk factors of clinical AD may as

well act through other pathways such as functionally impairing neuro-

transmission efficiency and synaptic disorganization that may not be

strongly reflected in structural MRI. In a recent preprint the same

SHARPIN variant has been reported as a risk locus of AD in a case/

control study (de Rojas et al., 2020).

In conclusion, using a data-driven decomposition of brain mor-

phometry maps, we identify early limbic degeneration as a new imag-

ing feature of AD, and report a novel genetic risk variant in SHARPIN

associated with structural deficits of this vulnerable brain region. Our

multivariate method of mining brain degeneration using structural

MRI and ICA may benefit future studies of AD, including disease prog-

nosis and treatment trials. Our results underscore SHARPIN, as a

postsynaptic adhesion modulator, in pathways of neurodegeneration

in AD. Frequent implication of the β1-integrin pathway by several

novel risk genes of AD including SHARPIN warrants further research.
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